博客
关于我
Python数据科学分析实战
阅读量:275 次
发布时间:2019-03-01

本文共 688 字,大约阅读时间需要 2 分钟。

数据科学着重于对数据进行研究与分析。借助计算机的快速计算能力,我们能够从海量数据中提取有价值的信息,进而为决策提供支持。在人工智能时代,Python语言无疑是数据科学的重要工具。掌握Python数据科学技能,不仅是从事AI研究的基础,更是解决实际问题的关键能力。

Python数据科学分析实战课程

本课程旨在通过实践案例,帮助学习者掌握Python数据科学的核心技能。课程内容涵盖数据处理、特征工程、建模与分析等多个方面,结合真实项目案例,帮助学生快速上手并解决实际问题。

课程分为五个模块,涵盖以下内容:

01 Python与数据科学概述

本节将介绍数据科学的基本概念、工具与技术,以及Python在数据科学中的核心作用。通过简单的示例,帮助学生快速理解数据科学的价值和应用场景。

02 足球运动员特征分析

本节将通过足球运动员数据集,讲解如何提取、清洗和分析运动员特征。案例将展示如何利用数据科学技术,发现隐藏的规律并为球队制定训练策略。

03 Facebook营销组合分类

本节将结合真实的Facebook营销数据,讲解如何利用深度学习模型进行营销组合分类。通过案例展示如何预测营销组合的效果,为市场营销决策提供数据支持。

04 在线实验:足球运动员特征分析

通过实际的足球运动员数据,进行动手分析,学习如何提取和可视化关键特征。学生可以尝试不同的分析方法,发现数据背后隐藏的模式。

05 在线实验:Facebook营销组合分类

基于调查数据集,建立多分类模型,预测未知数据的分类结果。本节不仅讲解模型构建方法,还将分享如何通过可视化工具直观展示分类效果。

更多精选课程

转载地址:http://bnyo.baihongyu.com/

你可能感兴趣的文章
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NUUO网络视频录像机 upload.php 任意文件上传漏洞复现
查看>>
Nuxt Time 使用指南
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVDIMM原理与应用之四:基于pstore 和 ramoops保存Kernel panic日志
查看>>
NVelocity标签使用详解
查看>>
NVelocity标签设置缓存的解决方案
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
nvidia 各种卡
查看>>
Nvidia 系列显卡大解析 B100、A40、A100、A800、H100、H800、V100 该如何选择,各自的配置详细与架构详细介绍,分别运用于哪些项目场景
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>
nvidia-htop 使用教程
查看>>
nvidia-smi 参数详解
查看>>
Nvidia驱动失效,采用官方的方法重装更快
查看>>
nvmw安装node-v4.0.0之后版本的临时解决办法
查看>>
nvm切换node版本
查看>>
nvm安装 出现 Error retrieving “http://xxxx/SHASUMS256.txt“: HTTP Status 404 解决方法
查看>>
nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
查看>>